

Gwinear School
Calculation Policy

This policy has been adapted from the White Rose Maths Hub Calculation Policy with further material added including videos demonstrating each process. It is a working document and will be revised and amended as necessary.

The overall aims of this policy are that, when children leave primary school they:

- have a secure knowledge of number facts and a good understanding of the four operations supported by a fluency and understanding of the fundamentals of mathematics
- Know the best strategy to use, estimate before calculating, systematically break problems down into a series of simpler steps with perseverance and use estimation and rounding to check that an answer is reasonable
- Are able to use this knowledge and understanding to carry out calculations mentally, solve problems of increasing complexity and develop an ability to recall and apply knowledge rapidly.
- Make use of diagrams and informal notes and jottings to help record steps and partial answers when using mental methods
- Have an efficient, reliable, compact written method of calculation for each operation, which they can apply with confidence when undertaking calculations
- Be able to identify when a calculator is the best tool for the task and use this primarily as a way of checking rather than simply a way of calculating.
- Be able to explain their strategies to calculate and, using spoken language, give mathematical justification, argument or proof.

Manipulatives used to aid/teach mathematics

Term by term objective

This is a guide to show how much time should be spent on block units of learning. The majority of learning should be taught as a block unit. These time timetables are flexible can vary depending on needs of children and assessment periods.

Number	Measures	Geometry	Statistics	Consolidation

Class 1: Reception
Children learn through play and at their own pace. Teachers will assess when children are ready to tackle the two math areas to work towards achieving the early learning goals (number and shape space and measures)

Class 2: Year 1 and 2

	1	2	3	4	5	6	7	8	9	10	11	12
Autumn	Place value							Addition \& subtraction				\& Division
Spring	Fractions					Time		Shape		t/mass		idation
Summer	Place value/Money			Statistics		Consolidation	Place value					dation

	1	2	3	4	5	6	7	8	9	10	11	12
Autumn		Place value		Addition and Subtraction				Multiplication and Division				ures
Spring		Fractions				Time		Decimals				stics
Summer		Shape/symmetry/position/direction/angles				Consolidation		Length/perimeter/area				dation

Class 4: Year 5 and 6

	1	2	3	4	5	6	7		8	9	10	1	12
Autumn	Place Value			Addition/subtraction/multiplication/division						Fractions			
Spring	Decimals/percentages/ratio						Converting units				rea/v	angles	Consolidation
Summer	Properties/position \& direction			Algebra		Statistics		prime	Consolidation				

Presentation and teaching
EYFS: Recording will be completed through observations.
KS1:

- All numerals should be written a digit per box
- Symbols should also be written in their own box
- Children should use math books that have 1 cm squares

KS2:

- All numerals must be written a digit per box
- Symbols and decimal points must be written in their own box
- Children should use math books that have 8 mm squares
- All diagrams and lines for fractions must be drawn on the lines in the book with a ruler

6|Gwinear School Calculation Policy

Addition

Language to be used
This is a progression of language and shows when new language should be introduced, language should still be used throughout the years once introduced to children.

Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- add - more - and make - sum - total - altogether - score - double one more, two more, ten more... - how many more to make... ? - how many more is... than...?	- plus - how much more is...?	- addition - one hundred more - tens boundary - amount - inverse	- hundreds boundary - calculator	- increase - unit boundary - currency	- units boundary - tenths boundary - brackets	- commutative - complements $(10,100)$ - exact/exactly - most significant digit

Objective \& Strategy	Concrete	Pictorial	Abstract
Add two single digit numbers and count/count on to find the answer	Show children two groups of objects and ask them how many there are altogether. Children should use 1:1 correspondence to count objects. "How much fruit do we have?"	Show children pictures of objects/dots and ask children how many there are altogether.	Children may begin to say number sentence aloud using "add or and" " 2 and 3 is 5 " Progress to meet year 1 objective
*Solve practical problems by combining groups of 2,5 and 10	Children shown/given objects/numicon in groups of 2, 5 and 10 and asked to add them together without counting the amounts in both groups	Children to count pictures of dots or other objects on a picture or drawing (independent drawing or provided) and saw amount aloud *or write numeral	N/A

Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.		$4+3=7$ $10=6+4$ Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.		Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10 . $9+5=14$ 11 4	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	2 more than 5.		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. . ' 8 is 3 more than 5.'

Objective \＆ Strategy	Concrete	Pictorial	Abstract							
Adding multiples of ten	Model using dienes and bead strings	E 3 fons +6 tens $=$ \qquad 6ons $30+30=$ \qquad Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+a=60 \end{aligned}$							
Use known number facts Part part whole	children ex－ plore ways of making num－ bers within 20	$\begin{gathered} 20 \\ \square+\square=20 \\ \square+\square=20 \\ \square=\square \\ \hline+\square \end{gathered}$	\square $+1=16$ $16-1=$ \square $1+$ \square $=16$ 16 － \square $=1$							
Using known facts	$\begin{aligned} & \square_{\square}+\square_{\square} \quad=\square_{\square} \square_{\square}^{\square} \\ & \square \square \square+\square \square \square \end{aligned}$	$\begin{aligned} & \because+\because=\therefore \\ &\\|+\\| \\|=\\| \\|\\| \\| \\ & \square \square+日 \square=\text { 日昌 } \\ & \square \square 日 \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$							
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$							

	 Strategy	Concrete	Pictorial	Abstract	
	Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$	
	Add a 2 digit number and tens	1 $25+10=35$ Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$	
	Add two 2-digit numbers	$/ / / \\|_{y_{0}}^{p_{0} 0_{0}}$ Model using dienes, place value counters and numicon	 Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$	
	Add three 1-digit numbers	 Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.	

 Strategy	Concrete	Pictorial	Abstract
Column Additionno regrouping (friendly numbers) Add two or three 2 or 3digit numbers.	 Model using Dienes or numicon Add together the ones first, then the tens. Move to using place value counters	Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ Add the ones first, then the tens, then the hundreds.

Subtraction

Language to be used
This is a progression of language and shows when new language should be introduced, language should still be used throughout the years once introduced to the children.

Reception

Year 1

- take (away)
- leave
- how many are left/left over?
- how many have gone?
- one less, two less... ten less...
- how many fewer is... than...?
- difference between is the same as
- subtract
- minus
- how much less is...?
- half/halve

Year 2 Year 3
one hundred less

- tens boundary
- inverse

Year 3 Year 4
hundreds boundary

- change

Year 4 Year 5

- decrease
- units boundary
- tenths boundary

Year 6

- least significant digit
- discount

| Objective \& | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| Strategy | | | |

5	Objective \& Strategy	Concrete	Pictorial	Abstract
	Taking away ones.	Use physical objects, counters , cubes etc to show how objects can be taken away.	$15-3=12$ Cross out drawn objects to show what has been taken away.	$7-4=3$ $16-9=7$
	Counting back	918 Move objects away from the group, counting backwards. \square Move the beads along the bead string as you count \square backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4 . What number are you at?
	Find the Difference	Compare objects and amounts Lay objects to represent bar model.	Count on using a number line to find the difference.	Hannah has12 sweets and her sister has 5. How many more does Hannah have than her sister.?

N	Objective \& Strategy	Concrete	Pictorial	Abstract
	Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{aligned} & 3,3,323 \\ & 20-4- \end{aligned}$	$20-4=16$
	Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
	Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	$34-28$ Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

m		Comate	Ritasal	Amatat
$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\check{c}} \end{aligned}$	5			
0 $\stackrel{0}{2}$ $\stackrel{0}{3}$ 	meme			

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	$234-179$ Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Use the phrase 'take and make' for exchange
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{aligned} & \begin{array}{l} 3^{10} X^{1} 0 \text { 多 } 6 \\ - \\ \hline 28,9 \\ \hline 2 \end{array} \\ & \begin{array}{l} \text { Use zeros } \\ \text { for place- } \\ \text { holders. } \end{array} \\ & \hline \end{aligned}$
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			

Multiplication

Language to be used
This is a progression of language and shows when new language should be introduced, language should still be used throughout the years once introduced to the children.

Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- double	- lots of - times - multiply - multiplied - once, twice... - big, long, wide - repeated addition - pairs	- multiple - array - column - row - inverse	- multiplication - product	- factor - equivalent - quotient	- short multiplication - long multiplication	

Multiplication: Reception

 Strategy	Concrete	Pictorial	Abstract
Doubling numbers to 10	Children can count two groups of objects of the same amount and understand that this is doubling	Children can copy amount of dots or images to show the doubling is a number multiplied by 2 and count final amount by using 1:1 correspondence	"Double 3 is 6 "

5 \leq	 Strategy	Concrete	Pictorial	Abstract
	Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.
	Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples. 	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
	Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw Draw and make representations	$2 \times 4=8$

Objective \& Strategy	Concrete	Pictorial	Abstract
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bogs altogether?	Write addition sentences to describe objects and pictures.
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5, 3 lots of 2 etc	Draw representations of arrays to show understandine	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$

 Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

	Objective \& Strategy	Concrete	Pictorial	Abstract
	Multiplying decimals up to 2 decimal places by a single digit.	As shown in year 4.		Remind children that the single digit belongs in the units column. Line up the decimal points in the question and the answer.
	Column multiplication	Manipulatives may still be used with the corresponding long multiplication modelled alongside.	Continue to use bar modelling to support problem solving	1 8 \times 1 3 5 4 1 8 0 2 3 4 18×3 on the first row ($8 \times 3=24$, carrying the 2 for 20 , then 1×3) 18×10 on the 2nd row. Show multiplying by 10 by putting zero in units first

Division
Language to be used
This is a progression of language and shows when new language should be introduced, language should still be used throughout the years once introduced to the children.

Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- half/halve - share	- share equally - one each, two each, three each... - groups of - pairs - divide - divided - left over	- inverse	- division - remainder	- divisible by - factor - quotient - bus stop	- long division - short division	

 Strategy	Concrete	Pictorial	Abstract
Halving amounts and objects between 2-10	Dividing an amount of objects between two people "Share these grapes fairly/equally/into two groups"	Draw a line to show half of a shape	Half of 6 is 3

5	 Strategy	Concrete	Pictorial	Abstract
	Division as sharing Use Gordon ITPs for modelling	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. 8 $\mathbf{8}$ shared between $\mathbf{2}$ is $\mathbf{4}$ Sharing: 12 shared between 3 is 4	12 shared between 3 is 4

n	 Strategy	Concrete	Pictorial	Abstract
	Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24 ? $24 \div 6=4$
	Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

 Strategy	Concrete	Pictorial	Abstract
Division with remainders.	$14 \div 3=$ Divide objects between groups and see how much is left over Example without $40 \div 5$ Ask "How many Example with rem $38+6$	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. Use bar models to show division with remainders. remainder: $5 s$ in 40? mainder: rs, when it becomes inefficient to count in single mu orded using known facts.	complete written divisions and show the remainder using r . $\begin{array}{cc} 29 & \div 8=3 \\ \uparrow \uparrow \uparrow & \text { REMAINDER } 5 \\ \text { dividend } \\ \text { diviscr quotient } \end{array}$ ives a remainder of 2 ultiples, bigger I

10	Objective \& Strategy	Concrete	Pictorial	Abstract
	Divide at least 3 digit numbers by 1 digit. Short Division	 Use place value counters to divide using the bus stop method alongside Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14.	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately.

Objective \& Strategy	Concrete	Pictorial	Abstract
Count up and down in tenths/hundredths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10	Use counting stick and base 10 to show a whole in ten equal pieces \square \square 10 pennies in a 10p can help this.		$\begin{aligned} & 0.1,0.2,0.3,0.4 . . \\ & \frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10} \end{aligned}$
Recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators	Dividing objects into groups and counting amount in each group.	half of 4 is	What is $\frac{3}{4}$ of 12 ? $\begin{aligned} 12 \div 4 & =\square \\ 3 \times & =\square \\ \frac{3}{4} \times 12 & =\square \end{aligned}$
Recognise and show, using diagrams, equivalent fractions with small denominators and from families of common equivalent fractions	As year 2	"	"
Add and subtract fractions with the same denominator	Use fraction mats. $1 / 101 / 101 / 101 / 101 / 10$ 5 tenths		$\frac{2}{5}+\frac{1}{5}=\frac{3}{5}$ Add the numerator and leave the denominators the same.

Objective \& Strategy	Concrete	Pictorial	Abstract
Compare and order fractions whose denominators are all multiples of the same number	Fraction tiles to physically overlay or match fractions		$\frac{3}{4}>\frac{4}{8}$
Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	Same as Years 3 \& 4	"	"
Add and subtract fractions with denominators that are multiples of the same number	Use fraction tiles 1/8 1/8	$1 \frac{7}{8}+2 \frac{1}{4}=$	$\frac{1}{2}+\frac{1}{3}=?$ Make the $\frac{1}{2} \times 3=\frac{3}{6} \quad \frac{1}{3} \times 2=\frac{2}{6}$ denominators the same $\frac{3}{6}+\frac{2}{6}=\frac{5}{6}$
Use common factors to simplify fractions; use common multiples to express fractions in the same denomination	N/A	N/A	$\frac{4}{28} \div 4=\frac{1}{8}$ Both denominator and numerator are multiples of 4
Compare and order fractions, including fractions > 1	$\frac{1}{6}$ Use fraction tiles $\frac{1}{8}$ $\frac{1}{10}$ $\frac{1}{12}$		$1 \frac{4}{6}>1 \frac{1}{3}$

